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Turbulent fluctuation and  transport of passive  scalars  by  random  wave  fields 
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Turbulent transport of passive  scalars by random wave  fields is studied, with  applications to statis- 
tics of chlorophyll concentration in the ocean.  The  existence of the small  parameter ‘ I L O / C O ,  where uo 
and co are the characteristic particle velocity and wave phase  speed,  respectively,  allows  essentially 
exact  calculations,  and as such  provides a rich testing ground  for quantitative comparisons  between 
theory and  observation.  General  expressions are derived  for the diffusion constant and  mean drift 
velocity. It is shown that  the spectrum of passive  scalar fluctuations display  two distinct inertial 
range power laws  even  when the wave  velocity  field has only  one. 

Passive  scalar transport by turbulent velocity fields has 
been a subject of intense  interest to fluid dynamicisits for 
many  years [l-51. The problem  is of great  importance  in 
ocean  and  atmosphere  dynamics where the  transport of 
heat,  moisture,  salt,  and bio-geochemical quantities has 
short  term  (weather) as well as long term (climate) im- 
plications.  Theories to  date have focused mainly  on the 
effects of Navier-Stokes turbulence in two and  three di- 
mensions. The velocity field in  these cases is strongly 
nonlinear,  and  analytic solutions are  restricted  to spe- 
cial model problems  with  Gaussian statistics,  and lim- 
ited (***) ranges of spatial dimensionality and/or Kol- 
mogorov exponent [2,4,5]. 

In  this work we study passive scalar transport by a 
class of turbulent velocity fields that arise from trau- 
eling wave  fields [3]. It transpires (see below) that a 
small parameter, u o / ~ ,  in the problem,  where uo and q, 
are  the  characteristic  particle  and wave phase  speed, re- 
spectively, allows essentially  exact perturbative  analytic 
treatment. From the theoretical  point of view, the rich 
variety of physical wave systems  provide an equally rich 
set of problems that  are amenable to detailed  quantita- 
tive  analysis, a rare commodity  in fluid dynamics. Cor- 
respondingly,  satellite  observations of different regions of 
the ocean  surface  provide  essentially  unique  laboratories 
where  these  theories  can be  tested. 

In  what follows we  will outline the theoretical formal- 
ism,  based  on an expansion of the Lagrangian  dynamics 
in terms of Eulerian  quantities,  exploiting the smallness 
(***) of the  parameter  uo/q,.  The formalism  will then%e 
applied to  the derivation of an effective diffusion equation 
for the mean concentration field. The spectrum of pas- 
sive scalar  fluctuations  about the mean will also (***) be 
studied. It transpires that  the inertial  range  exhibits two 
distinct power  law regions even  when the velocity field 
exhibits only one. The predicted spectra  are  then com- 
pared  favorably  with observed chlorophyll concentration 
spectra in ocean regions whose dynamics are  dominated 
by wave, rather  than vortical  motions. 

The  equation of motion for the passive scalar concen- 
tration field $(x, t )  by a (possibly  compressible)  advect- 
ing velocity field v(x, t )  is, 

at$ + v . (v$) = K V 2 $ ,  

in which K is the microscopic (molecular)  diffusion con- 
stant. We  will be  interested  in  cases where the large- 
scale transport induced by v is many  orders of magni- 
tude  greater  than  that by K ,  and we  will  henceforth set 
K z 0. For incompressible v (which  would, e g ,  preclude 
study of transport by acoustic waves) the nonlinear  term 
takes the more  standard form v.V$J. Mean  quantities  are 
defined via an ensemble average over v, whose statistics 
are  assumed given. For Navier-Stokes  turbulence  these 
statistics  are ill-characterized and highly  nontrivial,  but 
for waves,  which have a well  defined set of at most weakly 
interacting modes,  one has  the  representation, 

ddk 
a(k)6(k; ~ ) e ~ [ ~ ’ ~ - ~ ( ~ ) ~ ]  + c.c., (2) 

Gaussian  statistics, fully characterized by the wavenum- 
ber spectrum 

(a(k)a*(k’)) = f(k)(27r)‘b(k - k’), 

are an excellent approximation.  Here C.C. stands for com- 
plex conjugate, k is the wavevector, a(k) is the mode 
amplitude, S(k;z) is the mode profile, and w(k)  is the 
dispersion  relation (e.g., w(k) = clkl for  acoustic wave). 
We have  divided the full d-dimensional  space  (kept gen- 
eral for convenience) of x = (r, z)  into a d 5 d di- 
mensional “horizontal”  subspace r, and a d = d - d 
dimensional  “vertical”  subspace z.  For typical oceano- 
graphic  applications  one will have d = 2 and d = 1. 
It is trivial to include in (2) a superposition of two or 
more wave modes, but we shall  assume for simplicity 
here that only a single mode is present.  The form (2) 
shows that  the full wavenumber-frequency spectrum is 
confined to  the hypersurfaces w = f w ( k ) .  The spec- 
trum f (k )  is typically  peaked about some characteris- 
tic wavenumber ko, which then defines a characteristic 
wavelength X0 = 27r/ko and wave period TO = 2r/w(ko) .  
The width Ak of the  spectrum yields a corresponding 
frequency width Aw rz QAk, which defines a correlation 
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length ( = 27r/Ak and a decorrelation  time r = 27r/Aw 
of the wavefield. 

The  computations  that follow are based on the follow- 
ing  random walk representation for $(x, t )  [6]. Let Z,,(t) 
be the Lagrangian trajectory of a particle freely advected 
by the flow that is constrained to be at x at time s ,  
and  hence  satisfying the  Lagrangian  transport  equation 
&Z,,(t)  = v(Z,,(t),t). The equivalent  integral form is 

t 
Zx,(t) = x + ds'v(Zxs(s ' ) ,  s'). (4) 

It is then  straightforward to show that a formal  solution 
to (1) (with n = 0) for any two times t > s is 

$(x,t) = /ddz'q9(x',  s)6[z - Z,l,(t)]. (5) 

The function $(x, t )  is a random  variable,  implicitly de- 
pendent  on the history of Z,,(t). Only if t - s > T is 
Z,#,(t)  statistically  independent of $(x! ,  s ) ,  and one  may 
factorize the average of (5) into  the Markov-type  form 

P(x,  tlx', s )  = (S[S - ZX,.(t)]), (6) 

where $ E ($). Using the usual  Fourier  representation 
of the &function,  one may write 

in which K is a full  d-dimensional wavevector and X = 
- ln(e-iK'AZxO(t)), where AZ,o(t) Z,o(t)-x. A trans- 
port  equation for $ may now be  derived by taking  the 
time  derivative of (6 ) ,  bringing down a factor p 3 & X  in- 
side the integral. Diffusion and mean  drift are large  scale 
phenomena that emerge on length and  time  scales much 
larger than  the [ and r ,  respectively, of the wave field. 
To study  them one  performs a gradient  expansion on the 
equation of motion,  corresponding to a Taylor  expansion 
of p for small IKI: 

in which, 

and so on,  are  multi-time  Lagrangian  correlators. Here 
the  subscript c indicates a cummulant  average, Le., that 
the  product of the averages of the two internal  factors 
should be subtracted. We  will see below that  the p(") 
become time  independent for t - s > 7. Substituting (8) 

into (7) and  (6),  and using the correspondence iKL H a1, 
one obtains in  this  limit, 

Finally, if one  assumes that  the  spatial variation of the 
p(n) is very slow on the scale of the dependence of P on 
x - x', i.e., that  the  statistics of the velocity field change 
very slowly on the scale of <, one may factor p(n) out of 
the integral to  obtain  the local equation of motion, 

x [PI 1.. .1,  (x)$(x, t)]. (11) 

This  factorization is exact for a translation  invariant sys- 
tem  where the p(") are  x-independent.  It is approximate 
if d > 0 since the p(") will then  depend on the vertical 
coordinate  z. For sufficiently smooth 4 one may drop  all 
terms for n 2 3 to  obtain  the diffusion equation, 

at$ + V . (uq) = V . (D . V$), (12) 

in which, 

are  the mean  drift  velocity  and diffusion tensor. 
The results (11)-(13) are very general  and  are  not re- 

stricted to wave systems,  but the explicit  computation of 
the averages  in (9) is  often  impossible  due to  the nonlin- 
ear  relation (4) between  Lagrangian and Eulerian coordi- 
nates. We  will  now show, however, that for low amplitude 
wave fields a perturbative calculation is possible. 

Equation (4) may be  iterated  to  obtain  the following 
time-ordered  product  Eulerian  expansion: 

v(Z,,(t), t )  = / t  dsl /"  dsz . . . LSn" ds, 
n=O 9 

X[V(X, s n )  * V][V(X, 3,-1) ' 0 1 .  * * [v (x ,  3 1 )  . V]V(X, t ) ,  
(14) 

in  which the  gradient  operators  act on all x-dependence 
to their  right. The corresponding  expansion for AZx, ( t )  
is obtained  simply by substituting (14) into (4). For 
waves, unlike Navier-Stokes  turbulence,  these  expansions 
are in fact  rapidly  convergent, as  can be seen from the 
following estimate:  the velocity is O(u0) and varies on 
spatial  scale XO,  where X0 is the  dominant wavelength in 
(2) and (3). Gradients  acting  on v are therefore 0(1 /Xo) .  
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For t - s  = O(T) ,  the  nth  term in the sum (14) is therefore 
O[(UOT/XO)*U~] .  Thus, if the distance do = UOT travelled 
by a tracer  particle in a decorrelation time is  much less 
that  the wavelength XO, convergence is assured.  Noting 
that if T is of the  same order as the dominant wave period 
TO - X,/@ (as  is typically the  case), where q, is the wave 
speed,  then U O T / X O  - uo/@: the particle  speed  should 
be much smaller than  the wave speed.  Since uo is pro- 
portional to  the wave amplitude, while @ is independent 
of it,  this  criterion will be obeyed for low amplitude, at 
most weakly nonlinear, waves. Under  typical  ocean con- 
ditions,  one  finds uo/@ - 0.1 which is indeed sufficiently 
small. 

The expansion (14) may  now be  substituted  into (9), 
and  the  Gaussian averages over the Eulerian v performed 
using the Wick decomposition. For lack of space we will 
not discuss this problem further here,  except to say that 
one finds that u = O(ZC~/G-,) and D = O(U;T/$). For 
parameters  appropriate to  the ocean, one finds u -1- 
5cm/s,  and D N 103-104cm2/s. These values turn  out  to 
be insignificant on large (>lOOkm) scales, but  can domi- 
nate  eddy  turbulent values on small (<lOkm) scales, and 
therefore  may be  important for. so-called sub-grid model- 
ing of ocean  dynamics. A full discussion of these issues, 
with  applications to realistic  ocean wave model  systems 
will be presented  in [lo]. 

We turn  next to  the physically more  interesting  prob- 
lem of fluctuations of the  tracer  concentration  about  the 
mean: wave effects enter at zeroth  order  in U O / @  and 
therefore, unlike the mean transport coefficients, may 
have a significant effect. Spatial  fluctuations of pas- 
sive tracers,  such as chlorophyll-a, have been viewed in 
oceanographic literature as an indicator of dynamical 
processes occuring in the  top  tens  meters of the water 
column.  Dynamics of this ocean layer are  traditionally 
thought of as dominated by two-dimensional eddy  turbu- 
lence. In  their  pioneering work  Gower et al [7] suggested 
that  the observed power  law spectrum of chlorophyll- 
a spatial  fluctuations, Fig. 1, is  due  to  the  fact  that  the 
kinetic  energy spectrum of oceanic  motions also follows a 

law in the inertial  range  dominated by the direct cas- 
cade of enstrophy. This view  was criticized by Leisieur 
and  Sadorny [SI who pointed out  that  the  tracer spec- 
trum should  actually follow that of the conserved cas- 
cading  quantity,  namely  the  enstrophy, which exhibits a 
k" behavior.  Observations  in other  areas of the ocean, 
Fig. 2, confirm this classical viewpoint (***). The results 
in Fig. 1 therefore  remained (***) unexplained. 

We  will  now show that Fig. 1 is perfectly (***) con- 
sistent with  wave-dominated turbulence. In many  ocean 
regions, including high geographic latitudes  studied in 
[7], the relative level of two-dimensional eddy  turbulence 
may be rather low, and  the ocean  dynamics  may well be 
dominated by internal  gravity waves,  known as baroclinic 
inertia-gravity (BIG) wave turbulence.  Recent  analyses 
of ocean  altimeter  measurements of sea  surface  height 
(SSH) variations [9] show that  the level  of eddy  turbu- 
lence in such regions is, indeed, well  below that of BIG 
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FIG. 1. Power spectrum of chlorophyll fluctuations in a 
180kmx250km  ocean area south of Iceland, as reported in 
[7] based on analysis of the Landsat multispectral imagery 
(reproduced through courtesy of the authors). Triangles: ex- 
perimental data. Dashed  line:  least  squares k-2.92 power law 
fit. Inset: Power spectra of sea surface  height  fluctuations 
in this same  region, based on the analysis of Topex/Poseidon 
ocean altimeter measurements described in [9]. Solid  curve: 
slow component of the SSH fluctuations associated with the 
vortical motions. Dashed curve: fast component caused by 
the gravity-wave motions. 

wave turbulence. The insets  in  Figs. 1 and 2 illustrate 
the difference for two  ocean regions with, respectively, 
characteristically low and high  levels of two-dimensional 
vortical  turbulence. We  will  now derive tracer  spectra for 
this case and show that  they are consistent  with Fig. 1. 

Consider an initially  quiescent fluid with  an initial 
tracer  concentration $0 (x) characterized by the autocor- 
relation  function &(x - x') = [$o(x)$o(x')]~~. Symbol 
[.]a" denotes an  appropriate ensemble average over  some 
preexisting  fluctuations excluding wave-induced motions 
(***). We  now  use $0 as an initial  condition in the  trans- 
port  equation (l), and  compute 

R ( x  - x') = ([$(X, t ) $ ( ~ ' ,  t)]av) (15) 

This  correlator is expected to be  time  independent for 
T << t <( T d ,  where Td is the much  longer time scale 
on which diffusion and  drift effects strongly  alter $. In 
other words, we are  interested in the  short-term effects of 
the wave motion on the  concentration field fluctuations 
which act (***) before significant large-scale transport 
takes place. Using the formalism  presented above one 
obtains 
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The first  subrange  permits  expanding (***) the expo- 
nential  in  (17).  One then  obtains the result h(k) = 
& ( k )  + Af i (k )  with 
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FIG. 2. Power spectrum of chlorophyll-a fluctuations in an 
ocean area  east of Honshu  Island  (Japan), based on analysis of 
the  OCTS  multispectral imagery obtained from the  ADEOS 
satellite (courtesy of the  Japanese Space Agency NASDA). 
Inset: power spectra of sea surface  height variations in this 
region, as described  in caption to Fig. 1. 

with  kernel 

in which g(k; x - x') = - ln(e-*k'[Azxo(t)-Az,,o(t)]). The 
latter  quantity may  be  computed  perturbatively  using 
(14). However, since we are  interested only in  short-term 
effects, only the  zeroth  order result A 2  = J dsv(x, s ) ,  is 
required.  One obtains  then a(k,r) = 3 rij(r)kikj, 
with 

00 

rij(r) = - LW dsIsl[Gij(O, s )  - Gij(r,s)] - ( i  j ) ,  

(18) 

in  which Gij(r, t)  = ( q ( r , t ) q ( O , O ) )  is the  Eulerianve- 
locity  correlator.  In  deriving (18) we have  again used 
the fact that  the frequency spectrum vanishes  identically 
at w = 0. The result is seen to be  indeed  independent 
of t for t > 7, the  time beyond which G(r, t )  essentially 
vanishes. Corrections to this  zeroth  order  approxima- 
tion for g may be shown to be of relative O(ui/ci) ,  and 
thus we require k 2 u i ~ 2 / 4  ~ 1 ,  (kX0)2(u0/q,)4 << 1, i.e., 
k < <  C~/uiAo. Since the  inertial range of v corresponds 
roughly  to k > 1/&, the present  calculation will be valid 
for k as much as two decades  into the  inertial  range. 

Within the above  range  there are two subranges to 
consider: 1 < kXo < Q / U O  and ~ / u o  < kXo < ( Q / ~ o ) ~ .  

where li; is the over all  mean  concentration,  and F L ( ~ )  E 
Cij  k&Fij(k) is the longitudinal wavenumber spectrum. 
The waves therefore  give an  additive  contribution to  the 
background spectrum, which will then  be  observable  only 
if the  latter is small  compared to AR(k).  This will indeed 
be the case  in  quiescent  regions  described  above. For (an- 
gle integrated)  spectrum kd-lF'(k) - and w - ck 
(appropriate  to BIG waves shorter  than  the Rossby ra- 
dius)  one finds kd-'AR(k) - k-3 ,  consistent  with Fig. 1. 

In the second subrange,  treating  for  simplicity  only 
the isotropic  case rij = rdij, (17) may be  reduced to  the 
form 

The small T asymptotics of R(T) may be  analyzed 
straightforwardly and one finds the following general re- 
sult: If & ( T )  x &(0)[1 - A P ] ,  r(T) x Bra, then 
one  finds R(r) x R(O)[1 - Crp] ,  with p(a ,P)  = 2(a + 
d ) / P  - d ,  corresponding to  an angular  integrated spec- 
trum kd"fi(k) - k-P with 

Defining exponents C and q via w - kc and F L ( ~ )  - 
one finds from (18) that P = min{q + 2C, 2). For 

q > 0 and C = 1, which includes BIG waves, one con- 
cludes that P = 2, and hence that p = a: The  spectrum 
is unrenormalized in this  regime. 
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